
A

PHYSICAL REVIEW E 68, 066119 ~2003!
Some asymptotic properties of duplication graphs
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Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of
biological networks, including protein-protein interaction networks and gene regulatory networks. Three mod-
els of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication
forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three
models. However, the parameter space of the latter two models is characterized by a range of parameter values
for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this
‘‘duplication-dominated’’ regime, it is shown that the degree distribution either approaches zero asymptotically,
or approaches a nonzero power-law degree distribution very slowly. In either case, the approach to the true
asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the
initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may
contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure
duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties
studied.
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I. INTRODUCTION

The study of evolving graphs as a means to describe
power-law degree distribution of large networks has beco
increasingly relevant in recent years, starting with the stu
of the preferential attachment model of graph growth@1# that
models a diverse range of man-made and natural netwo
Graphs that grow by duplication of existing vertices@2–4#
are particularly relevant to the study of biological network
including protein-protein interaction networks and gene
regulatory networks, because they mimic the process of g
duplication by duplication of vertices, i.e, by creation of ne
vertices that have exactly the same set of connection
preexisting vertices in the graph. Various processes of gr
growth in which duplication forms one element of th
growth dynamics have been shown to exhibit scale-free
havior at late times, characterized by a power-law dep
dence of the degree distributionp(k) of the graph, i.e.,
p(k);kg, whereg is the scaling exponent@5#. This has led
to the notion that biological networks possess features
common with other well-studied, albeit disparate, networ
including the Internet and metabolic networks@6,7#. A par-
ticularly attractive feature of such scale-free networks is th
putative robustness and tolerance of error@1,8,9#.

At the same time, it is not so well known that graphs th
grow predominantly by the duplication process have featu
that are distinct from other scale-free graphs. These feat
become particularly stark and revealing in the limit of pu
duplication growth. One such feature is the lack of ‘‘se
averaging’’ property@3#, i.e., the property that an individua
realization of graph growth does not asymptotically reach
degree distribution of an ensemble of such realizations. S
cifically, it was shown@2# that the number of distinct ‘‘or-
bits’’ ~the subsets of nodes that are connected to exactly
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same sets of nodes! remains invariant under any one realiz
tion of pure duplication growth. Therefore the number
distinct degrees of the graph~where the degree of a node
defined as the number of its nearest neighbors! also remains
invariant. This lack of ‘‘self-averaging’’ property may be fo
malized into an appropriate notion of lack of ergodicity
the graph dynamics.

Another distinct feature of duplication graphs is the la
of clear emergence of an asymptotic~long-time! solution for
the degree distribution of an ensemble of realizations@10#.
While the dynamics of a single realization of the duplicati
process can be clarified@2# in terms of invariance in the
number of orbits, the dynamics of an ensemble of such p
cesses is quite nontrivial~because of lack of self-averaging!
and is discussed below. In a model proposed earlier@4#,
which includes duplication as well as mutation by edge
moval and addition, a breakdown of the asymptotic stati
ary solution is found to occur in the analysis. For a range
parameters in which duplication is the dominant process
graph growth~the duplication-dominated regime!, the ana-
lytically obtained stationary solution has negative avera
degree and the scaling exponent does not agree with
obtained from numerical simulations. Further analysis of
same model@3# reveals that the degree distribution at la
times depends sensitively on initial conditions, although
dependence itself is not clarified.

One of the common threads in the analysis of duplicat
graphs is the assumed existence of a nontrivial, asympt
stationary degree distribution. While the scale-free prefer
tial attachment model@1# and other related models do hav
an asymptotic solution that is stationary, this is not genera
true. For our purposes, we will define a stationary deg
distribution to be a time-independent, nonzero degree dis
bution @11#.

A number of questions naturally emerge from the abo
observations. Some of them are the following
©2003 The American Physical Society19-1
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~1! Do ensembles of duplication graphs~i.e., graphs in
which the mechanism of growth is predominantly by mea
of duplication! have stationary asymptotic degree distrib
tions?

~2! Do ensembles of duplication graphs exhibit asympto
cally scale-free behavior?

~3! How does the asymptotic degree distribution depe
on initial conditions?

In this work, these questions are first answered in
context of pure duplication growth, where, as is sho
below, an exact solution for the degree distribution at
times can be obtained analytically. This is followed by
discussion of these issues in mixed models that contain
plication as a component of the dynamics. It is conjectu
that duplication-dominated growth may serve to define
class of models that are asymptotically nonstationary~or, at
best, quasistationary! but nevertheless may exhibit scale-fr
behavior. In spite of their lack of asymptotic stationari
these models could well describe realistic biological n
works.

II. PURE DUPLICATION GROWTH

Consider an undirected graph that grows by pure dupl
tion. We will assume that the graph hasm0 vertices at time
t50, and that time progresses in units of 1. At each ti
step, an existing vertex is picked at random and duplica
i.e., a new vertex is added to the graph with the same se
edges as an existing vertex. The number of vertices there
increases by one at each time step and the total numbe
vertices at timet is t1m0. Consequently, the maximum po
sible degree at timet is kmax(t)5t1m021. As shown earlier
@2#, any specific process of this type~i.e., a realization of this
dynamics! leaves the number of orbits, and therefore,
number of distinct degrees in the graph, invariant. We w
however, consider the dynamics of an ensemble of such
cesses and denote the degree distribution of this ensemb
p(k,t), which is the probability of finding a vertex of degre
k at time t.

Since every vertex has equal probability of being dup
cated at a given time step, the probabilitypnew(k,t) that a
new vertex has degreek at time t is given by

pnew~k,t !5p~k,t21!. ~1!

Furthermore, the probabilitypndup(k8,t) that a vertex of de-
greek8 is a neighbor of a duplicating vertex is proportion
to its degree. Demanding that a vertex of maximum degre
a neighbor of a duplicating vertex with probability 1 the
gives

pndup~k,t !5k~m01t21!21. ~2!

From the above we can find the number of vertices of deg
k at time t as

n~k,t !5pnew~k,t !@n~k,t21!11#1@12pnew~k,t !#

3n~k,t21!1pndup~k21,t !n~k21,t21!

2pndup~k,t !n~k,t21!, ~3!
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where the first two terms on the right-hand side~RHS! of the
above equation describe the contribution of the duplicat
vertex itself and distinguish between the two cases:~a! the
duplicating vertex is of degreek, and ~b! the duplicating
vertex is not of degreek; the third term comes from vertice
of degreek21 increasing their degree because they
neighbors of a duplicating vertex, and the fourth term is
loss term for vertices that were of degreek at the previous
time and have since increased their degree due to neig
duplication.

Noting that n(k,t)5p(k,t)(t1m0), one can derive the
following master equation forp(k,t):

p~k,t !2p~k,t21!5
k21

t1m0
p~k21,t21!

2
k

t1m0
p~k,t21!. ~4!

The above equation holds for allk>0 @with p(21,t)50 for
all t]. However, the dynamics of isolated vertices~vertices of
degree 0! is decoupled from the dynamics of higher degr
vertices. Indeed, one obtainsp(0,t) is constant for all time
andp(k,t) for k>1 does not depend onp(0,t). Because of
this decoupling property, we will only consider solutions
Eq. ~4! for k>1, supplemented by the equationp(0,t)
5p(0,0). Correspondingly, we will only consider graph
with a minimum degree of 1, with the understanding th
ensembles of graphs that contain isolated vertices can
subdivided into two ensembles, one ensemble of gra
whose minimum vertex degree is 1, and another ensemb
graphs that only contain isolated vertices. The dynamics
these two ensembles is then decoupled and we may
consider the nontrivial dynamics of the ensemble with mi
mum vertex degree of 1.

By inspection of Eq.~4!, a naive solution is obtained. Thi
is a ‘‘stationary’’ solution with scaling exponentg521 sat-
isfying kp(k)5(k21)p(k21), i.e., p(k);k21. Note that
this solution is not a global solution at any finite time b
cause it is not correctly normalized: demanding(k51

kmax(t)p(k)
51 causes the solution to be nonstationary, in which cas
is not a solution at all. This solution can, at best, therefore
an asymptotic solution, and even so, hold only for finite
many values ofk, because the sum ofk21 over infinitely
many values ofk is divergent, and the normalization cond
tion would fail to hold. Indeed, from an analysis of the exa
degree distribution below, we find that this stationary so
tion is not an asymptotic solution at all, although the pu
duplication growth limit in earlier analyses@2–4# yields a
scaling exponent of21.

A. Exact degree distribution for pure duplication growth

It turns out that the master equation~4! is simple enough
to solve exactly in terms of the initial degree distributio
p(k,0). By writing out each term on the RHS of the mas
equation in terms of distributions at earlier times, one noti
that p(k,t) is a sum of terms of the general form
9-2
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p~k2 i ,0!
~k21!~k22!•••~k2 i !~ t1m02k!~ t211m02k!•••~ i 111m02k!

~ t1m0!~ t1m021!•••~m011!
, ~5!

wherei runs from 0 tot. Furthermore, there aret!/ @ i !( t2 i )! # terms of this type. Putting all this together, one obtains

p~k,t !5(
i 50

t

p~k2 i ,0!
t!

i ! ~ t2 i !!

~k21!•••~k2 i !~ t1m02k!•••~ i 111m02k!

~ t1m0!~ t1m021!•••~m011!
. ~6!
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Changing the dummy variablei to j 5k2 i and noting that,
in the initial distribution, the minimum degree is 1 while th
maximum degree ism021, one finally obtains, after som
simplification,

p~k,t !5S t1m0

m0
D 21

(
j 5max(k2t,1)

min(k,m021) S t1m02k

m02 j D S k21

j 21 D p~ j ,0!.

~7!

In the sum above, it is understood that for values ofk and t
such that the lower limit of the sum is larger than the up
limit, p(k,t)50. The above solution corresponds to a m
ture, via the initial distribution, of a hypergeometric distrib
tion @12# and may be readily verified by direct substitutio
into Eq. ~4!.

B. Asymptotic analysis

The exact degree distribution, Eq.~7! above, shows that
for t@m0, there are three regimes ofk values for which the
degree distribution has potentially qualitatively different b
havior. The first regime is 1<k,m021, for which only
terms from j 51 up to j 5k contribute in the sum. The sec
ond regime ism021<k<t11, for which the entire suppor
of the initial degree distribution contributes to the sum~i.e.,
all terms from j 51 to j 5m021). The third regime ist
11,k,kmax(t)[t1m021, for which only terms fromj 5k
2t up to j 5m021 contribute to the sum. At late times, th
number of distinctk values in the second regime (t1m0
21 values! is much larger than the number of distinctk
values in the first and third regimes. We will therefore restr
our analysis to values ofk that correspond to the secon
regime. For the asymptotic analysis below, we will furth
assume thatm0!k!t.

In order to study the late-time behavior of the degree d
tribution, the asymptotic expansion of the Gamma funct
@13# is used to obtain the following asymptotic results, va
for m0!k!t and 1< j <m021:

S t1m0

m0
D;

tm0

m0!
@11O~ t21!#, ~8!

S t1m02k

m02 j D;
tm02 j

~m02 j !!
@11O~ t21!#, ~9!

S k21

j 21 D;
kj 21

~ j 21!!
@11O~k21!#. ~10!
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Substituting these into Eq.~7!, one obtains, form0!k!t,

p~k,t !;
m0

t (
j 51

m021 S m021

j 21 D S k

t D
j 21

p~ j ,0!@11O~k21!#.

~11!

Since every successive term in the sum above is multip
by an additional factor ofk/t!1, the dominant contribution
to p(k,t) comes from the lowest nonzero value ofj such that
p( j ,0)Þ0. This value ofj is the lowest nonzero degree in th
initial ensemble of graphs. Definingkmin as the lowest non-
zero degree in the initial distribution, we obtain the appro
mate asymptotic result

p~k,t !;
m

t S m021

kmin21D S k

t D
kmin21

p~kmin,0!@11O~k21!#.

~12!

It follows that the asymptotic degree distribution approach
zero ast2kmin for larget and is therefore nonstationary. How
ever, for large, finitet, the following result is obtained.The
asymptotic degree distribution for pure duplication graph
although nonstationary, has a scaling exponent ofg5kmin
21, where kmin is the smallest nonzero degree in the initi
graph.

In particular, the scaling exponent ispositivewhen kmin
.1. @This behavior does not cause any normalization pr
lems ast→` becausep(k,t)→0 in this limit.# Figure 1
gives plots of the asymptotic degree distribution genera
from numerical simulations of the master equation. For
casekmin51, it is found that the degree distribution is un
form, while for kmin52, p(k) has a linear dependence onk,
consistent with the above result.

For realistic graphs, such as most biological networks
interest, it is usually the case thatkmin51. If these graphs
evolved by means of a pure duplication process, the late-t
degree distribution of an ensemble of such graphs would
dominated by a uniform distribution.

We now examine the features of the asymptotic deg
distribution that are amenable to a direct analysis of the m
ter equation.

C. Direct asymptotic analysis

The asymptotic behavior of the degree distribution o
tained so far relies on knowledge of the exact solution~7!. It
is of interest to know what features of the asymptotic deg
distribution can be obtained directly from the master eq
9-3
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tion, without recourse to the exact solution. This is especi
important in the analysis of more complex models, where
exact degree distribution for all time and for all values ok
may be analytically intractable.

We first note that the lack of existence of a stationa
asymptotic degree distribution may be deduced immedia
from a generating function@14# approach to the problem
Assuming that a stationary asymptotic degree distribut
exists, withp(k,t)5p(k,t21)[p(k) for all k>1, and de-
fining the generating functionf(x),

f~x!5 (
k51

`

xk p~k!, ~13!

one obtains from the master equation~4! the following equa-
tion for f(x):

x~x21!
df

dx
50, ~14!

which givesf(x)5 const for 0,x,1. @The normalization
condition f~1!51 then implies that the constant equals#
This is inconsistent with the fact thatp(k)Þ0 for somek
>1. Hence the assumption of a stationary distribution le
to a contradiction and therefore a stationary distribution c
not exist.

In order to analyze the nonstationary asymptotic distri
tion, one may assume that the asymptotic degree distribu
is of the separable form:

p~k,t !;(
c

gc~ t ! f c~k!, ~15!

FIG. 1. Pure duplication growth. The asymptotic degree dis
bution for an ensemble of graphs subject to pure duplica
growth, obtained by simulation of the master equation. The s
line is generated by an initial ensemble in which the lowest nonz
degree is 1. The dashed line is generated by an initial ensemb
which the lowest nonzero degree is 2. The simulation was car
out to 105 time steps. Natural logarithms are used in the plots.
06611
y
e

y
ly

n

s
-

-
on

where the possible values ofc are to be determined. Sinc
the master equation is a linear homogenous equation,
may further demand that every term in the above sum sa
fies the master equation.@Note that the true asymptotic solu
tion ~11! is indeed of the form~15!.# A typical term in the
sum above can then be substituted into the master equa
~4!. After some rearrangement of terms, one obtains

~ t1m0!S 12
gc~ t !

gc~ t21! D5k2~k21!
f c~k21!

f c~k!
. ~16!

Since the left-hand side of the above equation is a function
t alone and the RHS a function ofk alone, each side must b
separately constant, leading to the pair of equations

~ t1m0!S 12
gc~ t !

gc~ t21! D5c, ~17!

k2~k21!
f c~k21!

f c~k!
5c. ~18!

Equation~17! above gives rise to divergent growth ingc(t)
if c,0. A requirement is thereforec.0 ~thec50 case cor-
responds to a stationary solution, which has already b
eliminated!, a condition on the allowed values ofc. With this
condition, Eqs.~17! and ~18! are readily solved to yield

gc~ t !5gc~0!
G~m011!

G~m02c11!

G~ t1m02c11!

G~ t1m011!
;t2c,

~19!

f c~k!5 f c~1!G~22c!
G~k!

G~k2c11!
;kc21. ~20!

Therefore, a power-law degree distribution with exponeng
5c21 is obtained. From Eq.~19!, the lowest possible value
of c will dominate the late-time behavior. Note that, althou
c is as yet undetermined, the analysis establishes the co
relationship between the exponent characterizing the rat
which the degree distribution falls to zero (2c) and the scal-
ing exponent (c21). This is evident by comparison of Eq
~19! and~20! to Eq. ~12!. This relationship is a testable on
As shown in the following section, a similar relationship c
be derived from the asymptotic analysis of a more comp
model.

In order to obtain the allowed values of the constantc by
a direct asymptotic analysis, we resort to an eigenva
method that is described in the Appendix. The method sho
that the allowed values ofc are the positive integers,c5n,
n51,2, . . . ,consistent with the exact solution~7!. The low-
est possible value ofc is thenc51, giving rise to a uniform
degree distribution at late times. We are therefore able
capture most features of the exact solution by a dir
asymptotic analysis, the missing feature being the relati
ship between the initial degree distribution and the low
value ofc.

-
n
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III. A DUPLICATION-MUTATION MODEL

We now consider a more general, two-parameter gro
model suggested earlier@4# as a model for the evolutionar
growth of the proteome that involves both duplication a
mutation events. The model includes pure duplication gro
as a special case. Assuming that the initial graph hasm0
nodes, the graph evolves according to the following rules~i!
a vertex is selected at random and duplicated,~ii ! the links
emanating from the newly generated vertex are remo
with probability d; and ~iii ! new links are created betwee
the new vertex and all other vertices with probabilityb/(t
1m021) ~where t1m0 are the total number of vertices i
the graph at timet). The processes of link addition and r
moval are necessarily correlated. However, ford!1, it is
reasonable to approximate the evolution by uncorrelated
dition and removal@4#. With this assumption, the maste
equation forp(k,t) is

p~k,t !2p~k,t21!

5
~k11!d

t1m0
p~k11,t21!2

k12b

t1m0
p~k,t21!

1
~12d!~k21!12b

t1m0
p~k21,t21!. ~21!

Although the above equation describes the duplicati
mutation process only ford!1, the equation is still a valid
master equation for all values ofd and will be studied for all
values of d first before focussing on the duplication
dominated regimed!1. The equation that describes th
duplication-mutation process for all values ofd, a further
generalization of Eq.~21! above, has also been derived@4#
and its asymptotic behavior ford.1/2 has been studied i
detail @3#. The eventual case of interest here isd,1/2. Thus,
Eq. ~21! will be sufficient for our purposes. Note that th
limiting case d50, b50 corresponds to pure duplicatio
growth.

A. Condition for an asymptotically stationary degree
distribution

To obtain the condition for the existence of an asympto
stationary distribution, we assume a stationary normaliza
distribution to begin with, proceed with the analysis, a
search for a contradiction for some range of parameters
deed, settingp(k,t)5p(k,t21)5p(k) in Eq. ~21!, one ob-
tains,

~k11!dp~k11!2~k12b!p~k!

1@~12d!~k21!12b#p~k21!50. ~22!

The corresponding generating functionf(x) is given by

f~x!5(
k

xkp~k!. ~23!

Before analyzing the equation satisfied by the genera
function, it is important to note that, forp(k) to be a nor-
06611
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malizable probability distribution, the series~23! must con-
verge in the limitx→1. Furthermore,f(x) must be analytic
at x50. With this in mind, we turn to the equation satisfie
by f(x),

@~12d!x2d#
df

dx
12bf50. ~24!

The solution to the above equation is

f~x!5ad22b/(12d)u12x~d2121!u22b/(12d), ~25!

wherea is an integration constant. The above expression
analytic atx50 and can be expanded in a Taylor series
powers ofx to obtain the probabilitiesp(k). However, the
Taylor series converges only if

uxu~d2121!,1. ~26!

Demanding that the series converge asx→1 then yields the
condition d.1/2. For d<1/2, the series is divergent@15#,
which contradicts the assumption of a stationary norma
able probability distributionp(k). Therefore, we find that,
for d<1/2, the asymptotic distribution is not stationary@16#.

B. Asymptotic degree distribution for dÏ1Õ2

Since the asymptotic distribution is not stationary f
d<1/2, we may now consider solutions of Eq.~21! of the
separable form

p~k,t !; f c~k!gc~ t !. ~27!

As in the preceding section, these solutions are labeled
the separation constantc. One then obtains the pair of equa
tions

~ t1m0!S 12
gc~ t !

gc~ t21! D5c, ~28!

~k11!d f c~k11!2~k12b2c! f c~k!

1@~12d!~k21!12b# f c~k21!50. ~29!

It is clear from Eq.~28! that one must havec>0 for gc(t) to
remain bounded ast→`. Since c50 corresponds to the
stationary case, we will restrict our attention toc.0. First,
one finds from Eq.~28!,

gc~ t !5gc~0!
G~ t1m2c11!G~m11!

G~ t1m11!G~m2c11!
;t2c, ~30!

as t→`.
While the full asymptotic solution forf c(k) is difficult to

obtain from Eq.~29!, we may carry out a Taylor expansion o
f c(k11) and f c(k) for large values ofk, i.e.,

f c~k11!. f c~k!1
d fc

dk
, ~31!

f c~k21!. f c~k!2
d fc

dk
. ~32!
9-5
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After substituting the above in Eq.~29! and solving the re-
sulting first-order differential equation, one finds

g5
c

122d
21, ~33!

resulting in the asymptotic (t→`) solution

p~k,t !;t2ckc/(122d)21, k@1. ~34!

Again, the separation of variables analysis of the asympt
degree distribution does not fix the allowed values ofc. The
eigenvalue method outlined in the Appendix, gives, to fi
order ind,

c52b~12d!1n~122d!1O~d2!, n50,1,2, . . . . ~35!

Therefore, the late time solution will be dominated by t
lowest value ofc that is consistent with initial conditions
The lowest possible such value isc522b(12d). It should
be emphasized, however, that the above range of valuesc
is only valid for d!1.

Figure 2 displays a plot of the degree distribution wh
d5b50.1. In this case, the lowest possible value ofc is c
50.18, giving rise to an analytically predicted scaling exp
nent g.20.775. Direct simulation of the master equatio
shown in Fig. 2, gives approximate power law behavior w
a scaling exponent of about20.73, in reasonable agreeme
with the analytical result.

It may be argued that duplication-dominated growth~d
,1/2! in this model is unrealistic because the mean deg
^k& t grows without bound@3,4#, whereas realistic, large, bio
logical networks have small mean degree. This argumen
however, unfounded. For the duplication-mutation mode
has been shown@3,4# that ^k& t;t122d for large t and for
d,1/2. Therefore, ifd is less than but sufficiently close t

FIG. 2. Duplication-mutation growth. The asymptotic degr
distribution for an ensemble of graphs subject to duplicati
mutation growth with parametersd5b50.1. The scaling exponen
is about20.72, in good agreement with analytical predictions. T
simulation was carried out to 106 time steps. Natural logarithms ar
used in the plot.
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1/2 the mean degree will grow very slowly and remain sm
even when the size of the graph is large. Thus,d,1/2 could
well be a viable region of parameter space, although,
shown here, the analysis of graph growth would require t
the assumption of asymptotic stationary behavior be d
carded. If the lowest allowed value ofc does depend on
initial conditions~as in the pure duplication case!, large bio-
logical networks may contain important clues about t
structure of such networks very early in evolution.

IV. A MODEL WITH DUPLICATION AND PREFERENTIAL
ATTACHMENT

We now consider another two-parameter model of gra
growth that also contains pure duplication growth as a s
cial case but for which an asymptotic stationary distributi
always exists everywhere in parameter space except a
point corresponding to pure duplication growth. It will b
seen that, although an asymptotic stationary distribution
ists, the actual degree distribution approaches its station
value very slowly in the duplication-dominated regim
Therefore, even at late times~corresponding to large graphs!,
the degree distribution is more accurately described b
quasistationary distribution~in a manner clarified below!
rather than by the true asymptotic stationary distributio
This model therefore serves to identify another possible f
ture of duplication-dominated growth, namely, quasistatio
ary behavior, which may well hold in other, more realis
descriptions.

The growth model is a combination of pure duplicatio
growth, and growth by simple scale-free, preferential atta
ment@1#. We start with an initial graph at timet50 with m0
vertices. At each time step one of the following two pr
cesses can occur.

~a! An arbitrary vertex in the graph is duplicated~all ver-
tices have equal probability of duplication!, as in the pure
duplication growth model.

~b! A new vertex withm edges is added to the grap
These edges are preferentially attached to the high-de
vertices, i.e., the probability that an old vertex will be linke
to the new one is proportional to its degree.

We assume that process~a! occurs with probabilitypd and
process~b! occurs with probability 12pd . The model there-
fore has two parameters,m and pd . The casepd51 corre-
sponds to pure duplication growth, while the casepd50 cor-
responds to growth by preferential attachment alone.

The master equation for such a growth model is a sim
combination of the pure duplication and the scale-free p
erential attachment master equations,

p~k,t !2p~k,t21!

5
pd

t1m0
$~k21!p~k21,t21!2kp~k,t21!%

1
12pd

t1m0
H m

k
dk,m2p~k,t21!

1
m

^k& t21
@~k21!p~k21,t21!2kp~k,t21!#J , ~36!

-
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where

^k& t215(
k

kp~k,t21! ~37!

is the mean degree at timet21, anddk,m is the Kronecker
delta function.

A. Existence of an asymptotic stationary distribution

As before, we assume the existence of a stationary s
tion of Eq. ~36! and check whether the generating functi
f(x) is analytic atx50 and whether the series converges
x→1. Assuming p(k,t21)5p(k,t)5p(k) in the limit t
→`, one obtains forp(k),

S pd1
m~12pd!

^k&`
D @~k21!p~k21!2kp~k!#

5~12pd!~p~k!2dk,m!, ~38!

where

^k&`5 limt→`^k& t . ~39!

The corresponding equation for the generating funct
f(x), for pdÞ1, is

x~12x!

m

df

dx
2f1xm50, ~40!

where

m215
pd

12pd
1

m

^k&`
.0. ~41!

Equation~40! can be solved to yield, after some simplific
tion and a variable change,

f~x!5m~12x!mxm E
0

1

dssm1m21~12xs!2m21

1aS 12x

x D m

, ~42!

wherea is an integration constant. Note that the radius
convergence of the Taylor expansion of (12x)m is 1 and
that the radius of convergence of the Taylor expansion
(12xs)2m21 is 1/s.1. Furthermore, every term in the Tay
lor expansion of (12xs)2m21 can be integrated to give
finite result, providedmÞ0. Thus f(x) is analytic atx
50, provideda50 andmÞ0. We therefore set the integra
tion constanta50. To show that the Taylor expansion co
verges atx51, it is not enough to know that the Taylo
expansion aboutx50 has a radius of convergence of 1. W
further need to show that the integral overs gives a finite
result atx51.

In fact, the integral is divergent atx51 for any m>0.
However, the factor of (12x)m outside the integrand tend
to 0 asx→1. A more careful analysis is therefore require
06611
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To do this, we change variables froms to s85(12xs)/(1
2x) and rewritef(x) in the form

f~x!5mx2mE
1

(12x)21

ds8s82m21@12s8~12x!#m1m21.

~43!

Setting x51 in the above yieldsf~1!51, as required by
normalization.

We therefore find, for all 0<pd,1 andm.0, that the
asymptotic distribution is stationary for this type of growt
However, to find the stationary distribution and the cor
sponding scaling exponent, we need to find^k&` , the
asymptotic mean degree.

B. Asymptotic mean degree

The recursion equation for the evolution of the mean
gree can be obtained by multiplying both sides of Eq.~36! by
k and summing overk. One obtains

^k& t5^k& t21S 11
2pd21

t1m0
D1

2m~12pd!

t1m0
. ~44!

For pd,1/2, the above recursion gives rise to a fin
asymptotic mean degree,

^k&`5
2m~12pd!

122pd
, pd,1/2. ~45!

For pd>1/2, the mean degree grows without bound at
→`. To see this, we propagate Eq.~44! back tot50, giving

^k& t5
G~ t1m012pd!

G~ t1m011! H ^k&0

G~m011!

G~m012pd!

12m~12pd!(
i 51

t
G~ i 1m0!

G~ i 1m012pd!J . ~46!

The casespd51/2 and pd.1/2 are considered separatel
For pd51/2, the above equation simplifies to give

^k& t5^k&01m(
i 51

t

~m01 i !21, pd51/2. ~47!

For larget, one obtains the asymptotic behavior@13#

^k& t5m ln t1^k&02m(
j 51

m0

j 211mC1O~ t21!, pd51/2,

~48!

whereC is Euler’s constant. Thus the mean degree forpd
51/2 grows logarithmically to infinity ast→`.

For pd.1/2 ~the duplication-dominated regime in th
model!, the sum overi in Eq. ~46! can be explicitly per-
formed by expressing the ratio of Gamma functions in
sum in terms of the Beta function. Using an integral rep
sentation of the Beta function@13#, and interchanging the
sum and the integral, one finds
9-7
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^k& t5
G~ t1m012pd!

G~ t1m011!

G~m011!

G~m012pd! H ^k&01
2m~12pd!

2pd21 J
2

2m~12pd!

2pd21
~49!

;t2pd21
G~m011!

G~m012pd! H ^k&01
2m~12pd!

2pd21 J
2

2m~12pd!

2pd21
, ~50!

where the second equation above holds for larget. Again,
one finds forpd.1/2, that the mean degree grows witho
bound as a positive power oft for large t.

We thus find that̂ k&`5` for pd>1/2. Combining this
result with the result~45! for pd,1/2, we obtain

m52~12pd!, pd,1/2, ~51!

5pd
2121, pd>1/2. ~52!

C. Asymptotic stationary distribution and quasistationary
correction

In order to obtain the asymptotic stationary distributio
we may directly solve the recursion of Eq.~38! for k.m.
One finds

p~k!5p~m!
G~m1m11!

G~m!

G~k!

G~k1m11!

;p~m!
G~m1m11!

G~m!
k2m21, ~53!

where the last expression holds fork@m. A scale-free, sta-
tionary distribution therefore emerges, with scaling expon
g52m21, andm given by Eqs.~51! and ~52! above. Note
that this result breaks down in the pure duplication limitpd
51, because in this limit the asymptotic distribution is n
stationary, as discussed earlier.

Although the above result for the scaling exponent is c
rect for infinitely large graphs, the scaling exponent for la
but finite graphs may not even agree approximately with
asymptotic scaling exponent. To see this, note that
asymptotic scaling exponentg52m21 was obtained by sub
stituting the value of the mean degree att5` into the defi-
nition of m. For pd,1/2 this mean degree is finite and it
expected that, as the graph grows, the mean degree
quickly approach its asymptotic value. However, in t
duplication-dominated regime,pd>1/2, the asymptotic
mean degree is infinite and therefore never approached,
if the graph is large. A simple example is the casepd51/2,
for which the mean degree grows logarithmically with t
size of the graph and may therefore be small even for la
finite graphs. Therefore, for values ofpd greater than or
equal to, but close to, 1/2, it may be a better approximat
to replacem ~and thereforeg) by its time-dependent valu
~obtained from the time dependence of^k& t). This corre-
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sponds to a quasistationary correction to the asymptotic
tionary distribution, applied for large but finite graphs.

Specifically, in the quasistationary regime, we ha
p(k,t);kg(t) with g(t)52m(t)21 and

m~ t !215
pd

12pd
1

m

^k& t
, ~54!

where, for large but finite graphs,^k& t is given by Eq.~48!
for pd51/2 and by Eq.~50! for pd.1/2. The scaling expo-
nent therefore slowly drifts towards its true asymptotic va
as the graph grows larger.

The effect of the quasistationary correction is studied
Fig. 3 for the casepd51/2 andm56. The graph is grown to
approximately 1000 vertices. In this case, the scaling ex
nent att5` is g522, while the quasistationary correctio
gives ^k&1000.31.07, m21.1.19, and a scaling exponen
g.21.84. This is in better agreement with the actual scal
exponent of about21.8 obtained from the plot than the valu
22.

V. DISCUSSION

The asymptotic degree distributions in three models
graph growth have been analyzed in this paper: growth
pure duplication, and two two-parameter models in wh
duplication forms one element of growth. While pure dup
cation growth may be an unrealistic mechanism for a num

FIG. 3. Growth by duplication plus preferential attachment. T
asymptotic degree distribution for an ensemble of graphs subje
duplication plus preferential attachment withd51/2 andm56. The
simulation was carried out only to 1000 time steps in order to d
play the effect of the quasistationary correction. The true station
asymptotic solution for this system has a scaling exponent of22,
while the quasistationary correction predicts a scaling exponen
about 21.84, in closer agreement with the actual value of ab
21.8 obtained from the above simulation. The jump discontinuity
k56 appears because the master equation is discontinuous a
value. Natural logarithms are used in the plot.
9-8
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SOME ASYMPTOTIC PROPERTIES OF DUPLICATION GRAPHS PHYSICAL REVIEW E68, 066119 ~2003!
of reasons~including lack of ergodicity, linear growth of the
mean degree with the size of the graph, etc.!, it serves as a
useful idealized test case for the study of qualitative featu
such as asymptotic nonstationarity and sensitivity to ini
conditions, which may be present in more complex, m
realistic models. By analysis of the exact degree distribut
in the pure duplication model, we find that the asympto
degree distribution of an ensemble of graphs subject to p
duplication growth is indeed nonstationary but neverthel
exhibits power-law behavior with a non-negative expon
that depends on initial conditions in a simple way—t
power-law exponent is related to the lowest nonzero deg
in the initial graph. The nature of the asymptotic degree d
tribution is also found from a direct asymptotic analysis
the master equation characterizing pure duplication grow
although such an analysis, being valid only in the asympt
regime, does not relate the scaling exponent to initial con
tions.

The lack of existence of a stationary degree distribution
also found to occur in the duplication-dominated regim
~d<1/2! of the duplication-mutation model. For this mode
d51/2 defines a critical boundary in parameter space
separates nonstationary and stationary asymptotic beha
This also happens to be the critical boundary separating fi
asymptotic mean degree and infinite asymptotic mean de
@4#. It is argued that, ifd is less than but sufficiently close t
1/2, such a model could still describe realistic graphs,
cause the mean degree would increase very slowly with
size of the graph. The nonstationary asymptotic behavio
such duplication-dominated graphs could well depend on
tial conditions in a manner similar to the pure duplicati
case, via the lowest allowed value of the constantc that is
consistent with initial conditions.

For the model containing duplication growth combin
with preferential attachment, an asymptotic stationary dis
bution is found to exist for allpd,1. However, for the
duplication-dominated regime,pd>1/2 ~the critical bound-
ary separating finite asymptotic mean degree and infi
asymptotic mean degree!, the asymptotic degree distributio
is more realistically described by a quasistationary distri
tion that takes into account the fact that the mean degre
always finite for large but finite graphs.pd51/2 can then be
interpreted as a critical boundary separating stationary
quasi-stationary asymptotic degree distributions. On b
sides of the critical boundary, the degree distribution h
power-law behavior.
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These results suggest that duplication-dominated gr
growth may serve to model a class of large networks wh
degree distributions, although displaying power-law beh
ior, are not well approximated by stationary distribution
even when these networks have large size. Based on
models studied, we have found that at least two kinds
nonstationary asymptotic behavior can occur in such n
works: ~a! one in which the probabilities drift to zero whil
the scaling exponent remains invariant as long as the
work is large enough~nonstationary behavior!, and~b! one in
which the probabilities eventually converge to a nonze
power-law distribution but the scaling exponent drifts slow
to its asymptotic value~quasi-stationary behavior!. We also
find that the scaling exponent will depend on initial cond
tions in both cases: in the nonstationary case, this dep
dence occurs via the allowed lowest value of the separa
constantc, while in the quasistationary case, the scaling e
ponent depends on the mean degree in the initial graph,
Eq. ~54!. Thus, duplication-dominated, scale-free networ
may well contain early, and possibly identifiable, evolutio
ary remnants.

We leave open to future work the question of the relatio
ship, if any, between asymptotic stationarity of the deg
distribution and ergodicity in the graph dynamics.
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APPENDIX: AN EIGENVALUE METHOD FOR
ANALYZING THE TIME DEPENDENCE OF THE DEGREE

DISTRIBUTION

Consider the duplication-mutation model of Sec. III. A
late times (t@m0), Eq. ~21! can be expressed approximate
as a differential equation in the time variable,

dp~ t !

d~ ln t !
5A•p~ t !, ~A1!

where p(t) is a t-dimensional vector representation of th
degree distribution, p(t)5@p(0,t)p(1,t)p(2,t)•••p(t
21,t)#, and thet3t matrix A is given by
A53
22b d 0 0 0 0 •••

2b 2~112b! 2d 0 0 0 •••

0 12d12b 2~212b! 3d 0 0 •••

0 0 2~12d!12b 2~312b! 4d 0 •••

• • • • • • •••

• • • • • • •••

• • • • • • •••

4 . ~A2!
9-9
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The general solution to Eq.~A1! is

p~ t !5 (
n50

t21

q(n) tln, ~A3!

where$ln% are the eigenvalues of the matrixA and the time-
independent vectorsq(n) depend on the eigenvectors ofA
and on the initial degree distribution. Note that the abo
solution justifies the separation-of-variables assump
made in Secs. II and III.

In order to obtain the time dependence of the degree
tribution, we are interested in the eigenvalue spectrum oA.
While it is difficult to obtain the eigenvalues ofA in general,
it is quite straightforward to obtain them to leading order
d. Indeed, whend50, the eigenvalue equation det~A2lI !50
immediately yields the eigenvalues~denoted byln

(0))

ln
(0)52n22b, n50,1,2, . . . . ~A4!

For dÞ0, one finds, to first order ind,

det~A2lI !5~21! tH )
n50

t21

~n12b1l!

2 (
n51

t21

ndS )
l 50

n22

~ l 12b1l!D ~n2112b!

3S )
l 5n11

t21

~ l 12b1l!D J 1O~d2!. ~A5!
ut

. E

v
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By solving for the eigenvalues to first order ind, one
obtains

ln52n~122d!22b~12d!1O~d2!. ~A6!

The above gives the allowed values of the constantc in Sec.
III, c52ln . At late times, the degree distribution is dom
nated by the largestln ~lowest c), obtained by settingn
50, asl052c522b(12d).

The results of the pure duplication growth describ
in Sec. II may be obtained by settingd50,b50 in the above
and removing the first row and first column of the matr
A ~corresponding to decoupling the dynamics of isola
vertices from nonisolated ones!. Removal of the first row
and column is equivalent to discarding the eigenvaluel50.
Denoting the remaining eigenvalues byln

(0,0) , we then
have

ln
(0,0)52n, n51,2, . . . . ~A7!

The largest possible eigenvalue is then21, resulting
in c51 and a uniform degree distribution as argued
Sec. II.
ion.
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